Hydrothermal Synthesis of GTS-type Sodium Titanosilicate and its Sm3+ Ion Exchange

Keiko Fujiwara^{*1}, Tetsuo Hasegawa¹, and Akihiko Nakatsuka¹

¹Graduate School of Sciences and Technology for Innovation, Yamaguchi University (GSSTI, Yamaguchi Univ.) – Ube 755-8611, Japan

Abstract

Grace titanosilicates (GTS), represented by pharmacosiderite, have three dimensional tunnel-type structures. Na-GTS (Na4Ti4Si3O16·6H2O) crystallizes as a rhombohedral phase (space group ; a = 7.812 Å, $\alpha = 88.79\circ$) close to cubic system. In this structure, four TiO6 octahedra linked by edge-sharing form a Ti4O16 cubic cluster; the clusters are linked through SiO4 tetrahedra to form a three-dimensional framework with an interconnected pore system of 8-ring channels, occupied by the alkali-metal ions and adsorbed water molecules. The radioactive waste water continues to accumulate at the crippled Fukushima Daiichi Nuclear Power Plant. It is important to investigate the Sm3+ ion exchange properties of Na-GTS for the application of GTS to the removal of Sm radioisotopes from the radioactive waste water. In the present study, Sm3+-exchanged form [Na4(1-x)Sm4x/3(Ti4Si3O16) \cdot nH2O] of Na-GTS prepared hydrothermally are investigated by powder XRD to examine the occupied positions of Sm3+.

The starting materials for the hydrothermal synthesis were NaOH, amorphous SiO2 fine powder and TiCl4 aqueous solutions. For the synthesis of Na-GTS, the starting mixtures with the molar ratios of TiO2/SiO2 = 0.32 and Na2O/TiO2 = 5.62 were hydrothermally treated at 100 \circ C (0.23 MPa) according to the reported procedure. The Sm3+-exchanged forms were obtained by shaking of the synthesized Na-GTS (0.5 g) in the aqueous solution of SmCl3 (25 mL) at 25 \circ C for 6 hours. The concentration of Sm3+ in the aqueous solution was varied in the range from 0.01 to 0.5 M. The obtained samples were filtrated, washed and dried at 80 \circ C, after which they were examined by powder XRD. The Sm concentrations in the supernatant solutions were analyzed with atomic absorption spectrometry to evaluate the ion-exchange amounts.

The sample with the composition x = 0.95 was obtained after the treatments of Na-GTS in 0.5 M SmCl3 aqueous solutions. The increase in concentration of the SmCl3 aqueous solution increases the exchange amount. The comparison of the observed and simulated XRD patterns suggests that Sm3+ ions are almost equally distributed on both 4e and 6g sites in the cavities of GTS framework.

^{*}Speaker